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Abstract: In this paper, a model-free approach, based on a generalization of unsupervised Self
Organizing Feature Maps, is introduced to compensate for attitude control errors in a simulated
mini cheetah quadruped platform. Traditional techniques mainly exploit the potentialities of
convex model predictive control (MPC) to efficiently regulate the robot attitude while moving
in unstructured environments. However, they are based on the knowledge of the analytical model
of the robot. If the robot structure undergoes significant modifications due, for example to an
unbalancing of the robot weight caused by a load charged off the robot center of mass, the added
value of a model-free, adaptive unsupervised nonlinear controller, acting as a feed-forward error
compensator, shows its real effect when integrated with the model-based approach. Moreover,
the proposed solution, acting as a self-learning feedforward controller, contributes to the control
action only when needed, preserving the basic performance of the ongoing MPC action. The
design of the control scheme and simulation results will be reported, showing the impact of the
introduced model-free compensation on the quadruped robot locomotion.

Keywords: Legged robots; unsupervised nonlinear control; reward-based learning; feed-forward
control; MPC.

1. INTRODUCTION

Legged robot locomotion control is a really challenging
task that deserves to be fully investigated, especially when
unstructured environments need to be explored (Arena
et al., 2021). In literature, legged locomotion control is
designed following a low-level and a high-level approach.
The former imposes specific periodic trajectories to the
robot legs, as well as specific phase shifts among them, to
produce specific pre-assigned locomotion gaits; the latter is
in charge of maintaining other references, such as attitude
signals. These, if in the case of hexapods are feasible
(Arena et al., 2002b), in the case of quadrupeds and bipeds
attitude compensation is strictly needed. Under this per-
spective, several approaches are presented in the literature,
but the most promising, and already working finely, are
based on the fast computation of simplified linear models
of the robot dynamics, exploited to predict, in a finite time
horizon, the system outputs, subject to control actions to
be optimised in order to minimize a prescribed perfor-
mance index. This strategy, which goes under the name
of model predictive control (MPC), known since the late
80s, is nowadays acquiring an ever increasing interest due
to the availability of low-cost high-performance computing
hardware allowing real-time onboard processing (Mayne,
2014). Moreover, it was demonstrated that the approxi-
mation of the complex nonlinear dynamics of quadruped

robots through linear time-varying models is able to guar-
antee suitable results in locomotion and balance control
in experiments involving running quadrupeds on flat ter-
rains. However, as with all model-based control techniques,
the performance of the control action heavily relies on
the feasibility of the prediction model. For this reason,
in the literature, alternative strategies based uniquely on
model-free, data-driven nonlinear structures, such as neu-
ral networks, were introduced into the control loop. The
capabilities of universal approximation, typical of neural
networks, can be exploited to have a reliable prediction of
the system outputs only on the basis of experimental data.
Some examples of this approach refer to reinforcement
learning techniques (Yue, 2020), for improving the capabil-
ity of attitude maintenance while moving in unstructured
environments (Sun et al., 2021). The main weakness of
this approach is that, in principle, there is no guarantee
of preserving stability in the control loop. Moreover, the
knowledge of the system dynamics is completely discarded
in the controller design. So the primary motivation of our
approach is to maintain the suitability of a linear MPC and
to add compensation in case of unexpected disturbances.
In fact, a mixed approach is introduced, which takes into
account the suitable results of linear MPC for maintaining
locomotion and balance in nominal conditions, maintain-
ing a prescribed attitude signal by correcting the feedback
error, as recorded by the onboard inertial sensors (Garćıa



et al., 2021). In such cases when MPC reveals unavoidable
weaknesses, for example, in case of unexpected load, an
additional nonlinear controller is added, in feedforward
with the MPC block. The controller, which belongs to the
family of nonlinear self-organising feature maps (Barreto
et al., 2003), called Motor Map Controller (MMC) provides
outputs (i.e., force signals) in addition to the control sig-
nals produced by the MPC. In this way, the MMC action
is provided when needed. In the examples reported in this
work, disturbances are introduced through an additional
load in one of the legs; this unbalances the overall dynam-
ical structure, affecting the reliability of the robot model.
To the best of our knowledge, such mixed control scheme,
aimed at optimising the MPC performance in front of
typically real life disturbances (i.e. additional loads) in a
quadrupedal structure has not yet been faced with. It has
to be underlined that the MMC approach, belonging to the
family of model-free strategies, can be easily generalized
to different robotic structures, constituting an additional
block designed to overcome disturbances and compensate
for the nonlinearities discarded in the design phase. The
remaining of this paper is organized as follows: Section 2
introduces the Motor Maps, Section 3 describes the de-
signed control architecture and the simulation framework,
Section 4 presents the simulation results and finally the
conclusions are drawn in Section 5.

2. MOTOR MAPS: MATHEMATICAL
FORMULATION

Motor Maps (MMs) are neural structures proposed as an
upgrade of the more traditional Kohonen self-organising
feature maps (Kohonen et al., 2001). These are inspired by
the topology-preserving maps identified in the brain, which
encode the representation of sensory input signals into
space-organised responding units; these, in turn, elicit an
action in response to a given input stimulus. Kohonen net-
works formalize a self-organizing process that, at the end
of the learning phase, generates a topographic map where
neighbouring neurons are excited by inputs possessing
similar features. MMs expand the capabilities of Kohonen
networks by adding the possibility to associate to a specific
active neuron a required action to be executed (Ritter
et al., 1992). To realise such a task, Kohonen networks
are augmented with an additional output layer that hosts
a weight vector specific to each neuron site. Therefore, the
overall network consists of two different layers: the first one
is a traditional Kohonen layer, which hosts input weights,
whereas the other generates the output signal. Typically,
during the learning phase, both the input and the output
weights are updated. MMs are perfect candidates to act as
adaptive self-organizing controllers. These networks were
successfully adopted in a variety of applications, includ-
ing legged robot locomotion control (Arena et al., 2004),
chaotic systems control (Arena et al., 2002a) and as a
fundamental block in modelling the perception-action loop
(Arena et al., 2009).

Formally, an MM can be defined as an array of neurons
mapping the space V of the input patterns onto the space
U of the output actions:

Φ : V −→ U (1)

The basic structure of the Motor Map is presented in Fig.1.

Fig. 1. Motor Maps basic structure: the SOM layer is
connected with the input layer and the output layer
through weights that are learned with an unsuper-
vised clustering mechanism (i.e., input weights) and
a reward-based strategy (i.e., output weights).

It is basically a very simple architecture, made up of three
layers: the input and the output layers and a hidden layer
with spatially organized neurons. The hidden layer, the
so-called self-organizing feature map (SOFM), contains
neurons encoding common features of the input signals,
spatially organized to create clusters. The output layer
provides the control action as a function of the SOFM
neuron activation. The learning algorithm is the key to
obtaining a suitable spatial arrangement of both the input
and output weights of the map, which have the role of
embedding the dynamic aspects of the neural controller.
This is achieved by considering a learning rule which
extends the capabilities of the classical winner-take-all
algorithm. Upon the presentation of an input pattern,
the neuron that best matches the input pattern is elected
as the winner. Then, a weight update is realised not
only for the winning neuron but also for those neurons
belonging to a neighbourhood of a given radius. In the case
of unsupervised learning, no a priori information on the
appropriate control action is available. The algorithm has
to autonomously find the correct control action exploiting
the input pattern information and the performance index
to be optimised, under the guidance of the so-called
reward function. Output weight update is realised only
if the applied control improves the reward function, in
relation to the system being controlled. It is clear that the
most critical aspect relies on the selection of the reward
function. As mentioned above, the MM is introduced to
control the robot balance. This is achieved following the
scheme presented below in Fig.2, by acting incrementally
on the leg joint torque control signals. Restricting, for
simplicity only to the pitch (sagittal) plane, the control
objective is to maintain the pitch angle of the robot as
much as possible next to a reference angle. So the reward
function takes into account the error between the reference
and the actual pitch of the robot.

The most important aspect is the self-learning, model-free
characteristic of the MMC. It is able to learn the right
control law on the basis of the reward function to be
maximized. Its definition for the proposed application is
here reported:



Reward = −(Θ−Θref )
2 − (Θ̇− Θ̇ref )

2

(Θ−Θref )4 + 1
β (2)

where Θref , Θ, Θ̇ref , Θ̇ are the reference and actual pitch,
and the reference and actual pitch speed of the robot,
respectively. The gain β ∈ [0, 1] and the denominator
in the pitch derivative part of the Reward are introduced
to establish a priority of the pitch speed on the pitch
position error: as the pitch error decreases, more relevance
is given to the pitch speed error; moreover, the smaller the
β values the smaller the range of positions in which the
speed correction has an impact on the reward. β = 0.001
was selected as a suitable compromise in the simulation
performed below.

2.1 The learning algorithm

In this paper, with the aim of autonomously learning a
nonlinear balance controller for the mini cheetah robot,
the unsupervised version of the MMC will be considered.
The steps adopted to design the controller and apply
the learning algorithm are reported in the following. A
schematic flow chart is reported in Fig.2.

• The network topology and the hyperparameters are
defined, typically adopting a grid search and a heuris-
tic strategy. The input and output weights are ran-
domly initialized;

• an input pattern is presented at time t (I(t)) and,
using the Euclidean distance metrics, the winner
neuron Ns is selected which minimises the distance
between I(t) and the input weight vector linking Ns

to the input nodes;
• for that winner neuron Ns, the corresponding out-
put weight wNs,out is used to produce the control
action. More in details, the disturbed version O(t) =
wNs,out + αsλ is adopted, adding to the winner neu-
ron weight wNs,out the Gaussian, zero-mean random
variable λ, multiplied by the gain αs associated to
Ns. This αs, starting from an initial value, and fixed
a final value, is linearly decreased between these two
values as the learning phase proceeds with a defined
slope ηs;

• the actual Reward function R(t) is evaluated together
with the reward increment ∆R = R(t) − R(t −
1). If ∆R > bs, where bs is an average increase
associated to the neuron Ns. The input and output
weights connected to the winner neuron Ns and its
neighbouring ones are updated according to the rule:

wi,in(t + 1) = wi,in(t) + ηinζ(I(t) − wi,in(t)) (3)

wi,out(t + 1) = wi,out(t) + ηoutζ(O(t) − wi,out(t)) (4)

and bs is updated as follows:

bnews = bolds + σ(∆R− bolds ) (5)

where σ > 0 and ηin, ηout are the input and output
learning rates finally, I(t), O(t), wi,in, wi,out are the
input pattern, the output control signal and the input
and output weights, respectively. For each neuron N ,
ζ is the neighborhood function: if NR represents the
neighbour of radius R, around the current winner
neuron Ns, ζ is a binary value:

ζ = 1 ⇐⇒ N ∈ NR; (6)

So ζ establishes the radius, around Ns, within which
the weight update takes place. Of course, larger ζ

values, typically taken at the beginning of the learning
phase, guarantee that most of the neurons undergo
adaptation. As learning proceeds, ζ values decrease
towards the unit value. When learning is always ac-
tive, the reward evaluation and weight adaptation are
always repeated. The learning rate η is a function of
the learning epoch: during the starting phase (i.e.,
when a new reference pitch angle is considered) a
high learning rate guarantees rapid learning, while
subsequently, its decrements guarantee a good trade-
off between memory and innovation capabilities.

The MM controller is included in the overall control
loop, as specified in Section 3. In particular, within each
single learning iteration, an input pattern is presented,
the winning neuron Ns is selected and the output signal
is provided. Moreover, in a window dt = 0.01s, the
Reward is evaluated and the learning phase is performed,
i.e. wi,in, wi,out, bs, αs, are updated. After 10 iterations
an update of the other learning hyperparameters (i.e.,
learning rates, Neighbour radius, etc.) is performed. Table
1 summarises the hyperparameters used in the simulations.

Fig. 2. Flowchart of the control loop for each i-th learning
iteration. Each 10 iterations all the other parameters,
besides wi,in, wi,out, bs, αs, are updated.

Table 1. Motor Map learning parameters

Input learning rate ηin 1

Output Learning rate ηout 0.8

Learning explorative variable ηs 0.05

Maximum Neighborhood radius 10

Learning epochs 1000

dt 0.01

σ 0.8

αs (1, 1, 5)

3. THE MINI CHEETAH ROBOT CONTROL
SYSTEM AND SIMULATION FRAMEWORK

The quadruped robot taken into account to evaluate
the performance of the proposed controller is an MIT
Mini Cheetah-like robot, shown in Fig.3. It is a torque-
controlled four-legged robot developed at the MIT Biomi-
metic Robotics Lab (Katz et al., 2019).



Fig. 3. The Mini Cheetah simulated robot

The real Mini Cheetah robot has a structure similar to
the MIT Cheetah 3 robot (Bledt et al., 2018). The two
models differ only in characteristics such as mass, length
and motor gear ratio. The Mini Cheetah is roughly 60%
the length of Cheetah 3; it weighs is 9 kg, with 0.21m and
0.18m lengths for the upper and lower links, respectively.
The body length is about 0.38m. Both robots use identical,
self-contained actuator modules at each degree of freedom
(DoF) that incorporates together an electric motor, a
single-stage planetary transmission and power electronics.
The four identical legs are designed to maximise motion
ranges, and allow the robot to work identically forward,
backward or even upside down. The three degrees of
freedom of the legs are controlled by three actuators that
rotate the hip joint by a permitted angle of ±120◦, the
knee joint about ±155◦ and ab/ad joint over ±120◦. The
actuator driving the knee joint is placed coaxially to the
hip actuator, thus minimising the inertia of the leg with
respect to the body. Torque is transmitted to the knee joint
through a gates poly chain belt transmission which passes
through the hollow upper link of the leg and provides an
additional 1.55 : 1 gear-up (Katz et al., 2019). For the
simulations performed in this paper we used an accurate
dynamic model of the Mini Cheetah consisting of 25 rigid
bodies with 12 actuated DoF, 6 unactuated DoF and 12
constraints. The 25 rigid bodies consist of the robot main
body (a rigid box floating base), 4 abduction/adduction
(ab/ad) links, 4 hip links, 4 knee links, and 12 actuator
rotors, that represent the actuated DoF. The 6 unactuated
DoF are the base position and orientation. The dynamic
model is described by a total of 37 state variables.

3.1 The control scheme

For controlling the pitch angle of the simulated Mini Chee-
tah robot, the pitch error and its derivative are considered
input signals for the MM controller. Therefore, the MMC
has two input units and twelve outputs, corresponding to
the three force components along the three orthogonal axes
fi,x, fi,y, fi,z for each actuated leg (i = [1, · · · , 4]). Fig.4
shows a block scheme of the control loop. As depicted
in Fig.4, the MM controller is added, as an optimization
block, on the underlying traditional controller. In par-
ticular, the leg control commands are generated in two
different ways, according to the (stance or swing) phase of

Fig. 4. The Mini Cheetah control scheme.

the single leg. During the swing phase, the leg trajectory
is simply planned using an interpolation of a series of
waypoints using a Bezier curve approach (Saputra et al.,
2016). The stance phase is particularly relevant for stabil-
ity and attitude control. This is realised traditionally by a
model predictive linear controller (MPC) with the addition
of a whole-body impulse controller (WBIC) (Kim et al.,
2019; Garćıa et al., 2021). Here, the MPC computes the
forces needed to maintain the body in a standing position,
optimised on a 40Hz window; then these forces are used as
input signals for a faster (500Hz) WBIC controller, which
provides the stabilizing joint torques. In this loop and
during the stance phase, the MMC provides an additional
nonlinear feedforward control action, in terms of forces, to
be added to the underlying leg joint controller, after being
transformed in joint torques τi,ff through the Jacobian
matrix.

In this way, the MMC is able to autonomously learn the
nonlinear rules that link the reference pitch trajectory
to the residual joint torques to refine the overall robot
balance control. It has to be underlined that, in absence
of any disturbance, the definition of the reward function
makes the MMC action almost zero. Only when the
error increases, the MMC contribution is evident with a
nonlinear feedforward compensation.

3.2 Experiment issue and setup

The role of the MMC is to filter out potential disturbances
that can affect the robot performance and cannot be
taken into account in the model used in the MPC. In
particular, we simulated the case in which the robot
undergoes a weight variation in the anterior legs, whose
mass is increased twice with respect to the posterior ones.
This implies a variation of the center of mass position
and an unbalancing of the whole robot. In this case, the
positive role of the added MM control will be compared
and evaluated on the linear model based MPC-WBIC
control. The selected gait used within the simulations
was the trot which, due to its symmetry and stability
characteristics, is a perfect candidate to appreciate pitch
variations. The results are shown in the Section 4.

4. SIMULATION RESULTS

The learning procedure of the MMC was applied following
the reward-based learning procedure described in Section



2, using the data acquired from a dynamic simulation of
the Mini Cheetah robot while it is trotting on the spot.

The optimization of the MMC in terms of the number
of neural units was performed using a grid search. The
best MMC structure able to provide a good trade-off
between size and accuracy was selected considering 900
neurons arranged in a 30x30 2D lattice. Fig.5 reports the
internal distribution of the weights within the Kohonen
layer at the end of 1000 learning epochs. The pitch of
the robot body and its derivative, considered as inputs
to the MMC, are reported in the axes. The blue circle
represents, as an example, the winning neuron, whenever
the inputs fall within the neighbours of θ = 2.5◦ and
Θ̇ = −5◦/s. It can be seen that the network organises in
a range covering the poses typically spanned by this robot
walking configuration. In fact, since the weight increase is
concentrated on the front side, the pose of the robot tends
to lean down frontally (i.e. towards positive pitch angle
values). As a result, the Kohonen layer has to compensate
for positive pitch errors. In addition, the organization of
the Kohonen layer clearly emphasises the compensation
action around small pitch angles: inputs outside the range
Θminmax = [−1; 3.5], Θ̇minmax[−25; 5] generate forces so
as to make the following input to fall within the interval
[Θminmax, Θ̇minmax], making the MMC able to control the
robot towards the reference signals.

Fig. 5. The Kononen layer distribution at the end of a
typical learning phase. A winning neuron is repre-
sented as an example, in front of inputs falling within
a neighbour of the dotted lines.

Fig.6 depicts the MMC outputs, i.e. the force modules
for each of the 4 legs. What has to be underlined is the
highly symmetrical shape of the force modules: these are
almost equal for both the anterior and rear legs, enhancing
a highly balanced control action.

In order to assess the reliability of the results, being this
approach based on unsupervised learning, a statistical
analysis was performed, by running 10 different MMCs
with a random weight initialization. The results obtained
are depicted through the analysis of the Reward function,
reported in Fig.7. In detail, the figure reports the mean
value (i.e., yellow trace) and the variance values (i.e., black
trace) of the reward function over 10 learning trials. It
clearly appears that the reward values, after an initial

(a)

(b)

(c)

(d)

Fig. 6. Motor Map output, at the end of the learning phase
as a function of the inputs: force module acting on the
(a) front right leg, (b) front left leg, (c) rear right leg,
(d) rear left leg.

fluctuation, tend to a mean value around R = −0.5 and
an average variance σ = 1.3. This confirms the suitability
of network convergence.

Fig. 8 reports the time convergence of the body pitch angle
for one of the 10 MMCs trained before. The pitch angle
tends to zero, although showing a slightly positive bias
towards the front down position around 0.5◦.



Fig. 7. The mean and variance of the Reward function were
evaluated over 10 different MMC trials.

Fig. 8. Time convergence of the pitch angle obtained with
the MMC.

The role of the MMC over the traditional one (MPC-
WBIC) is well represented in Fig.9. Differently from the
learning phase, where the network runs at 100Hz, the
testing phase is performed by applying the MMC at a
frequency of 10KHz. In fact, the MMC, at the end of
the learning phase, involves only static processing, and so
can be applied even in several steps within each WBIC
iteration, which, in this application, runs at 0.5KHz.
Referring to Fig.9, in the starting phase only the tradi-
tional MPC-WBC is active and the robot shows a steady-
state pitch error of about 4.5◦ conspicuously leaning front
down. As soon as the MMC action is switched on, (after
about 5s) the pitch error suddenly decreases, settling at
an average value of about −0.1◦. Several successive similar
on-off trials are reported in the figure, showing consistent
behaviors. The suitability of the proposed structure is
therefore evident.

An additional testing phase was performed, leaving the
robot to move forward for 12s in a flat terrain with a
trot gait. In this case, the weight of the front legs was
increased by two times with respect to the default value:
from 1, 238Kg to 2, 476Kg. Being the additional weight
increase equally balanced on the forward side, the reference
strait trajectory is maintained and the robot is able to
navigate at a speed of around 1m/s. The relevant aspect
is that the pitch balance improvements are preserved also
during walking, although the MMC is being trained in
standing conditions (i.e., trot on the spot). This can be
appreciated in Fig.10 (a), where the pitch of the moving
robot is reported. The forward locomotion causes an added

Fig. 9. The testing phase of the MM controller runs within
the control loop at 10kHz. The MMC is turned on for
the first time at about 5s and then is turned on/off
other three times.

bias in the pitch error, so the robot once again tends
to lean forward-down (positive pitch angles). Fig.10 (a)
reports the alternative turning on and off of the MMC
action. In particular, when the MM controller is active,
for example in the interval [0; 2.5s] the body pitch settles
at about +0.7 ± 0.5◦, whereas, in the following 1s of
simulation, the absence of the MM control leads the pitch
error to attain values around +5 ± 0.4◦, much higher
than with MMC. The overall robot behaviour is therefore
significantly improved through the application of the MM
controller, already learned only in standing conditions.
Fig.10(b) reports the forward speed of the robot for
the previous simulation. The trend of the robot forward
velocity is a typical signal of a legged robot, showing
an average value surrounded by a series of oscillations
at a frequency related to the stepping pattern. It can
be appreciated that the MMC does not cause potential
destabilization. The picture testifies that even a sudden
introduction of the MMC does not negatively affect the
behavior of the robot. To show in action the role of the
MM controller, in Fig.10(c) the trotting behavior of the
robot with (left side) and without (right side) the MMC
action is reported. The robot, in the latter condition,
clearly leans forward down under the additional weight. It
is to be underlined that we are controlling only along the
sagittal plane, so, on average, the trajectory of the robot is
not altered. In case of an asymmetrical load disturbance,
which is possible if the robot has to hold additional
unbalanced weight, the trajectory could be not retained,
since a drift in the lateral direction is to be expected. To
further evaluate the MMC capabilities, a different scenario
including alternating slopes was considered. The MMC
was able to learn the proper input and output weights to
deal with this complex terrain soon after the first attempt
(i.e., time interval [0s, 20s]) as reported in Fig. 11.

5. CONCLUSIONS

In this paper, a motor-map-based nonlinear controller is
introduced with the aim to maintain pitch balance in a
simulated quadruped robot undergoing body-weight dis-
turbances which affect the efficiency of a more traditional
body balance control based on a linear MPC-WBC con-



(a)

(b)

(c)

Fig. 10. Effect of the MMC on the pitch control while
the robot is trotting: (a) pitch error; (b) forward
velocity; (c) snapshots showing the robot attitude
in the sagittal plane when the MMC is active (left
panel) and disabled (right panel). The control signal
is activated at 0s, around 4s and after 8s.

troller. The characteristics and advantages of the proposed
controller are outlined below:

• The MMC is a nonlinear self-learning controller,
uniquely based on measurements, without needing
apriori knowledge of the robot physical characteris-
tics, for the generation of the control law. In this
paper, this advantage is exploited together with those
deriving from a traditional controller, based on a
simplified robot model.

• Once the MMC is trained, the controller does not
need internal iterations, since a static map is created.
This generates a real-time, fast control action, suit-
able to be applied at different frequencies, as shown
in the paper.

Fig. 11. Time evolution of the robot pitch while walking on
a complex terrain characterized by alternating slope
changes (±14◦).

• Being a model-free approach, the MMC opens the
possibility to be easily transferred to other robotic
platforms.

• The nature of the Self Organising Feature maps em-
beds a nonlinear topographic representation of the
system, for the purpose of torque compensation. Suit-
able processing of the Kononen layer could be formu-
lated to explain the control action and generate an
alternative “linguistic-like” controller representation,
along with the recent concept of “explainable AI”.

• The feedforward MMC action, injecting an addi-
tional torque signal focalised to compensate for dis-
turbances, preserves the reliability of the underlying
MPC-WBIC controller, previously designed. The con-
trol action is therefore oriented to further optimise
the balance performance. This is in contrast with
other fully data-driven approaches (i.e. based on Re-
inforcement learning), that on the one hand discard
the model (and related controller) available, and on
the other hand, are particularly time-consuming and
computationally heavier than our structure.

• The MMC unsupervised learning scheme is particu-
larly suited in this case of study since if a supervised
learning-based structure would be adopted, the target
signal (i.e. the residual reaction force to be added to
the controller in front of each specific error) is not
easy to be calculated, to build the training set.

• The most critical aspect to be taken into account is
the Reward function definition, which is crucial for
the MMC success. This has to be defined after a series
of trials, together with the typical neural network
parameters (neuron number, learning rate, etc.)

• The structure, as demonstrated in the simulation
results, thanks to the simplicity of the learning algo-
rithms, has the capability to fast reach a maximiza-
tion of the reward function after the suitable mapping
of the input signals. This give the opportunity to
implement a never ending learning, which means that
a residual capability of weight plasticity is allowed to
the structure, in order to react to further modifica-
tions of the robot model, such as a further weight
variation. This leads to a a time-varying control law
which adapts to environment disturbances.



In this paper, only pitch control is reported. The results
obtained deserve further investigation and generalization
of the whole balance problem.
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